Русская мебель XIX века
История мебели
ДИЗАЙН-ПРОЕКТИРОВАНИЕ КОСТЮМА
Моделирование
Стиль
Ассортимент
ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ
ДЕТСКОЙ ОДЕЖДЫ
ОБРАЗНО-АССОЦИАТИВНЫЙ ПОДХОД
К ПРЕКТИРОВАНИЮ КОСТЮМА
Ансамбль
КЛАССИФИКАЦИЯ ПОТРЕБИТЕЛЕЙ
И КОЛЛЕКЦИЙ
ОСНОВНЫЕ ТЕНДЕНЦИИ В СОВРЕМЕННОМ
ДИЗАЙНЕ ОДЕЖДЫ
Художественное восприятие произведений
дизайна
Работа с деревом Советы мастера
Курс
лекций по ТОЭ и типовые задания
Источники электрической энергии
Расчет цепей постоянного тока по законам
Кирхгофа
Выполним расчет цепи по методу контурных токов
Реактивные сопротивления элементов цепи
Найдем комплексные амплитуды токов
Параметры элементов схем реактивных
двухполюсников
Амплитудный и фазовый спектры напряжения
Расчет переходных процессов в электрических
цепях
Найти токи во всех ветвях
Расчет переходных процессов при импупьсных
воздействиях

Атомная энергетика

Энергетический реактор на быстрых нейтронах
Примеры курсового расчета по дисциплине
"Теоретическая механика"
Проекция силы на ось
Уравнения равновесия плоской системы
сходящихся сил
Момент сил относительно точки и оси
Сумма статических моментов
Ускорение точки
Кинематические пары и цепи
Работа и мощность при вращательном движении
Сила трения качения
Построение эпюр продольных сил
Расчеты на срез и смятие
Расчеты на прочность и жесткость
Понятие о сложном деформированном
состоянии
Понятие о теориях прочности
Основные требования к машинам и деталям
Классификация машин
Храповые механизмы
Ременные передачи
Шпоночные и зубчатые (шлицевые) соединения
Назначение и классификация муфт
Сварные соединения

 

Энергетический реактор на быстрых нейтронах

Международное сотрудничество в области сохранения знаний по быстрым реакторам В последние годы наблюдается международная кооперация в области ядерной энергетики. При активном участии российских специалистов МАГАТЭ развивает крупный международный проект INPRO. Его цель – выработка принципов обеспечения безопасности и эффективности крупномасштабной ядерной энергетики, а также объединение обладателей ядерных технологий и будущих пользователей для совместных действий, направленных на усовершенствование ядерных реакторов и их топливных циклов.

Действующие реакторные технологии Большинство из действующих атомных энергоблоков используют легководные реакторы (LWR) - 82% от общего числа блоков. На долю тяжёловодных установок приходится 10%, газоохлаждаемых - 4%, и реакторов с водным охлаждением и графитовым замедлителем - 4%. В мире действуют также несколько быстрых реакторов с натриевым теплоносителем

Перспективы развития быстрых реакторов Главными факторами, влияющими на развитие ядерно-энергетических систем нового поколения в XXI веке, будут: экономика, безопасность, устойчивость с точки зрения нераспространения и защита окружающей среды, включая улучшение использования ресурсов и сокращение образования отходов. Многие будущие инновации будут сосредоточены на системах на быстрых нейтронах, которые могут производить больше делящегося материала в форме плутония-239, чем они потребляют

Технико-экономические показатели быстрых реакторов Пока запасы органического топлива продолжали стремительно иссякать, миллиарды долларов в развитых странах были истрачены на разработку альтернативных способов получения энергии, но эффективных технологий так и не нашли. Американцы, например, потратили несколько миллиардов долларов на развитие ветряных станций, но в итоге признали, что их доля едва ли когда-нибудь превысит 5% от общего объема производимого в стране электричества.

Сложности, связанные с быстрыми реакторами Удивляться тому, что внедрение столь привлекательного на первый взгляд ноу-хау в массовое производство так и не состоялось, не стоит.

Российская программа по быстрым реакторам Первый отечественный демонстрационный энергетический реактор на быстрых нейтронах БН-350 тепловой мощностью 1000 МВт был введен в строй в 1973 году на восточном побережье Каспийского моря [14]. Он имел традиционную для атомной энергетики петлевую схему передачи теплоты и паротурбинный комплекс для преобразования тепловой энергии. Часть тепловой мощности реактора использовалась для выработки электроэнергии, остальная шла на опреснение морской воды. Одна из отличительных особенностей схемы этой и последующих реакторных установок с натриевым теплоносителем - наличие промежуточного контура передачи теплоты между реактором и пароводяным контуром, продиктованное соображениями безопасности.

Система организации знаний по быстрым реакторам Одним из результатов, достигнутых человечеством в начале 21 века, является осознание того, что знания - это ресурс, необходимый для его дальнейшего развития. Ядерные знания - это тот особый значимый ресурс, без которого невозможно устойчивое развитие ядерной энергетики.

Исследование метаданных технических документов Главной целью Системы Организации Знаний по Быстрым Реакторам (СОЗ БР) является гарантированное сохранения знаний и опыта по быстрым реакторам, полученных в различных странах, в той форме, которая будет содействовать эффективному поиску и использованию информации.

Источники знаний по быстрым реакторам МАГАТЭ не ставит своей целью собирать и накапливать все знания по быстрым реакторам как таковые. Цель другая - аккумулировать информацию о том, какие знания по быстрым реакторам существуют в мире, и где они могут быть получены или приобретены. Иными словами, накапливаться будет информация об информации – метаданные, а при возможности и сами документы.

Разработка системы поиска документов по таксономии СОЗ БР Подразделение по Управлению Знаниями Департамента Ядерной Энергетики МАГАТЭ проводит активную работу, которая, по моему мнению, способна изменить ситуацию и помочь коллективной работе по созданию единого хранилища знаний по быстрым реакторам на основе таксономии СОЗ БР

Методическое руководство к расчёту Водо-водянных реакторов в курсовом проектировании Датой рождения российской ядерной энергетики принято считать 1954-й – год пуска в Советском Союзе первой атомной электростанции (АЭС) мощностью 6МВт. Опыт пуска и работы этой станции показал реальность использования атомной энергии в мирных целях. Вслед за относительно коротким этапом промышленного эксперимента последовал этап интенсивного строительства АЭС сразу в нескольких странах. Так к концу 1989 года в нашей стране выработка электроэнергии на АЭС составляет 220 – 255 млрд. квт. часов или 14% от её производства другими способами.

 Методика расчёта реакторов с тесной решёткой Любой гетерогенный реактор физически очень сложен для расчёта в один этап, т. е. для расчёта, который бы учитывал и внутреннюю геометрию активной зоны (распределение потока нейтронов всех энергий в твэлах и окружающем каждый из них замедлителем) и её конечность, обуславливающую утечку нейтронов из реактора. Трудность подхода к задаче усугубляется и тем, что как внутри ТВЭЛов, так и в прилежащих к ним слоях замедлителя почти при всех энергиях нейтронов неприменимо диффузионное приближение.

Метод вероятности первых столкновений Расчёт средних значений потоков нейтронов вблизи отдельных однородных зон можно произвести различными способами. Один из них - метод вероятности первых столкновений(ВПС). Он приобретает всё большее значение, т. к. позволяет, не прибегая к громоздким вычислениям, с достаточной точностью определить необходимые величины.

Коэффициент размножения на быстрых нейтронах. Во всех реакторах имеет место деления ядер, вызванное надтепловыми нейтронами. Различают два типа надтеплового деления топлива: на резонансных и на быстрых нейтронах с энергией выше порога деления U8. Рассмотрим такой жизненный цикл нейтронов, при котором вклад в размножение нейтронов обусловлен только поглощением тепловых нейтронов -U5.

Вероятность избежать резонансного поглощения (третья энергетическая группа) В реакторах на тепловых нейтронах из общего числа нейтронов, поглощённых в процессе замедления, подавляющая часть поглощается на резонансах U8. Расчёт энергетического спектра нейтронов и вероятности избежать резонансного поглощения в этом случае не может быть выполнен аналитически. Поэтому используем достаточно точные приближения, основанные на физических соображениях.

Коэффициент использования тепловых нейтронов В реакторах ВВЭР основная доля деления ядер ( »85 ¸90) % происходит нейтронами, входящих в четвёртую тепловую энергетическую группу. Поэтому параметры этой группы должны быть определены по возможности более точно.

Число вторичных нейтронов деления на один поглощённый топливом нейтрон

Расчёт эффективного коэффициента размножения Расчёт одногрупповых констант активной зоны и отражателя

 Гомогенный реактор с отражателем В целях определения критических размеров плоского гомогенного реактора запишем уравнения диффузии для активной зоны и отражателя с соответствующими граничными условиями.

 Расчёт кампании водо-водянного реактора Изменение концентрации топливных компонент в реакторе Во время работы в реакторе непрерывно протекают процессы, приводящие к изменению нуклидного состава. С течением времени постепенно выгорают ядра загруженного в реактор топлива и образуются новые. Среди последних следует выделить делящиеся ядра . Процесс накопления этих ядер принято называть воспроизводством делящегося материала.

Шлакование реактора Объединим шлаки в одну группу и будем оперировать суммарной ядерной плотностью.

Органы управления реактора В любом реакторе имеется независимая система - СУЗ для изменения . Необходимость её очевидна, если рассмотреть задачи решаемые СУЗ:

Ядерная энергетика в мире активно растет и развивается, особенно активно идет этот процесс в Японии, Корее, Китае и Индии. В последних двух странах потребность в электричестве растет столь быстро, что возникает вопрос уже о скорости наработки ресурсов ядерного топлива (обогащенного урана и плутония) для загрузки новых реакторов.

Замедление  нейтронов в средах Рассеяние нейтронов ядрами. Рассеянием называется процесс, при котором нейтрон сталкивается с ядром и отскакивает в сторону, передав ядру часть своей энергии. Все виды рассеяния нейтронов делятся на две группы – упругое и неупругое рассеяние.

Основы физики ядерных реакторов Цикл размножения нейтронов В результате реакции деления тяжелых ядер образуются новые вторичные нейтроны, которые сами, в свою очередь, могут вызвать деление других тяжелых ядер, и в результате возникнет т.н. самоподдерживающаяся цепная реакция деления. Самоподдерживающаяся цепная реакция деления в среде возможна при условии, что на один нейтрон, поглощенный ядром делящегося нуклида, высвобождается h ³1 новых нейтронов.

Число быстрых нейтронов образующихся при одном поглощении теплового нейтрона в топливе  nэф,

Коэффициент использования тепловых нейтронов В гомогенной активной зоне, где все материалы облучаются потоками тепловых нейтронов одинаковой плотности

Зависимость эффективного коэффициента размножения от обогащения ядерного топлива

Пространственное распределение потоков нейтронов в реакторе В модели диффузии можно получить аналитические функции распределения потока нейтронов в тепловом реакторе, которые позволяют сделать очень важные выводы по организации загрузки топлива в активной зоне, а также по его перегрузке, конструированию топливных кассет и ряду других вопросов.

Кинетика реакторов Основной задачей кинетики является описание поведения реактора во времени (при условии постоянства внутреннего состояния реактора). 

Характер поведения реактора в разных диапазонах нейтронной мощности, диапазоны ДИ, ДП, ДЭ При изучении свойств реактора и управлении им принято разделять очень широкий (8-15 порядков) диапазон нейтронной (или тепловой) мощности на три диапазона:

Эффекты реактивности в реакторе. Общие определения и требования к коэффициентам реактивности.

Виды эффектов реактивности. Для понимания сущности эффектов реактивности следует начать с главного – с причин появления эффектов реактивности. Главной причиной появления почти всех (или большинства ) эффектов можно считать изменение средней температуры реактора, т.е. всех компонент его среды, вызванное как работой внешних (по отношению к реактору) систем ЯЭУ, так и работой самого реактора (на мощности свыше 1%).

Плотностной эффект реактивности В соответствии с приведенным выше определением плотностной эффект обусловлен зависимостью реактивности от плотности воды или, более точно, раствора борной кислоты- rт = f( gн2о) при s = const.

Мощностной эффект реактивности Когда теплопроводность ядерного топлива в реакторе мала (как у UO2 в реакторах ВВЭР), то с увеличением мощности сильно изменяется профиль температуры в твэле и возрастает радиальная неравномерность ее распределения. Если на внешней поверхности топливной таблетки температура составляет примерно 350-400 0С, то в центре твэла она достигает 1500 0С и более (в режимах нормальной эксплуатации).

Динамика нуклидного состава реактора Выгорание ядерного топлива. Шлакование реактора. В ядерном топливе всегда содержатся делящиеся и сырьевые нуклиды, которые обеспечивают протекание цепной реакции деления и наработку вторичного ядерного топлива. Выгорание  ядерного топлива – это процесс превращения ядер делящегося нуклида в ядра других, неделящихся нуклидов вследствие деления и радиационного захвата нейтронов.

Воспроизводство ядерного топлива - это процесс образования в реакторе вторичных делящихся нуклидов из нуклидов, которые не делятся на тепловых нейтронах. В реакторах, работающих на уране, помимо выгорания делящегося нуклида 235U при радиационном захвате нейтронов ядрами 238U (реакция (n, g)) образуются ядра нового делящегося нуклида 239Pu. Затем, в результате последовательных захватов на 239Pu образуются также ядра 240Pu и 241Pu. Аналогично в ядерном реакторе, содержащем в активной зоне торий 232Th в качестве сырьевого нуклида, образуется новый делящийся нуклид 233U.

Отравлением активной зоны реактора называют процесс накопления короткоживущих нуклидов с высоким сечением поглощения, которые активно участвуют в непроизводительном захвате нейтронов (отравляют нейтронный баланс реактора). Явление отравления и разотравления активной зоны ярко выражено только в тепловых реакторах ( в реакторах на промежуточных нейтронах оно слабое, а в реакторах на быстрых нейтронах не существует вообще). Отравление реактора вносит существенные сложности в процесс управления реактором.

Стационарное отравление самарием Еще одним нуклидом, который вызывает процессы нестационарного отравления реактора, является 149Sm, имеющий свои специфические особенности

Эффект нестационарного отравления Xe и Sm Важность и сложность эффектов нестационарного отравления обусловлена тем, что при изменении мощности реактора происходит нарушение динамического равновесия между прибылью и убылью ядер-отравителей и, следовательно, происходит сложное изменение реактивности реактора за счет отравления

Нестационарное отравление реактора Sm при сбросе нагрузки со 100%W до 0%. Прометиевый провал.

Регулирование реакторов Когда в реакторе осуществляется цепная реакция, то его коэффициент размножения Кэф должен быть строго равен Кэф=1, а реактивность r –нулю. В то же время из вышеприведенного рассмотрения видно, что существует достаточно много эффектов нуклидной динамики, эффектов реактивности, которые вносят зависящие от времени и зачастую разнонаправленные изменения в реактивность, в результате чего она может заметно отклонятся от требуемой нулевой. Поэтому для удержания реактора в критическом состоянии необходимо изменять размножающие и поглощающие свойства активной зоны в целях компенсации возникающих эффектов.

Регулирование реактивности стержнями Основной частью СУЗ нужно считать ее рабочие органы, Чаще всего это подвижные поглощающие стержни, в которые входит материал сильно поглощающий нейтроны( в интересующем случае ВВЭР-тепловые нейтроны).

Жидкостное регулирование реактивности Причины введения системы борного регулирования. Ее преимущества и недостатки. В ядерных реакторах, типа ВВЭР-1000, широкое применение получило так называемое жидкостное борное регулирование. Суть его заключается в том, что в циркулирующую в первом контуре воду, выполняющую одновременно роль теплоносителя и замедлителя, добавляется определенное количество борной кислоты

Остаточное тепловыделение в топливе и кризис теплообмена Ядерный реактор имеет одну чрезвычайно специфическую особенность: энерговыделение в реакторе не прекращается сразу после остановки цепной реакции и исчерпания обычной тепловой инерции. Энерговыделение в нем продолжается долгие сутки, недели и месяцы за счет именно ядерных процессов распада, что порождает ряд технически сложных проблем и создает дополнительную угрозу для оборудования, персонала и окружающей среды, что в полной мере проявилось при аварии на АЭС Тримайл- Айленд.

Кризис теплообмена, условия его возникновения Энергетические ядерный реакторы имеют очень высокие плотности энерговыделения в активной зоне (для ВВЭР ее величина примерно равна 120кВт/л ) и, соответственно, высокие значения линейных нагрузок на ТВЭЛ. Это автоматически означает, что теплоотдача от ТВЭЛа к воде идет с очень высокой интенсивностью.

Курсовой проект «Электрическая часть электростанций и подстанций»

Курсовой проект «Электрическая часть электростанций и подстанций»

ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ АЭС Исходные данные для выбора структурной схемы АЭС На атомной электростанции (АЭС) планируется установить три турбогенератора номинальной мощностью по 1000 МВт с выдачей электроэнергии на распределительные устройства двух классов напряжений. На напряжении 750 кВ предполагается выдача мощности в ЭЭС, на напряжении 330 кВ – электроснабжение местного района.

Общие положения при выборе структурной схемы. Для обоснования и выбора схемы электрических соединений проанализированы нормальный, ремонтные и послеаварийные режимы работы. В нормальном режиме все элементы находятся в работе. В ремонтном –один или более элементов отключены для проведения планового ремонта. Послеаварийные режимы характеризуются отказами элементов. При выборе структурной схемы анализированы нормальный и ремонтные режимы, а затем выбирали параметры элементов схемы. Для уточнения их значений рассматривали послеаварийные режимы.

Выбор схемы распределительного устройства 750 кВ РУ ВН 750 кВ имеет восемь присоединений: четыре одноцепных воздушных линий, два блок и два автотрансформатора связи с РУ СН. Исходя из вышеперечисленных рекомендаций и требований, было рассмотрено два варианта структурных схем.

Расчет токов короткого замыкания необходим для выбора аппаратов и проводников и решения вопросов об ограничении токов при выборе схем электрических соединений.

Выбор электрических аппаратов Выбор выключателей и разъединителей

Выбор измерительных трансформаторов тока и напряжения

Современные ускорители - это комплексы, состоящие из нескольких ускорителей.

Технико-экономический расчёт структурной схемы

Расчёт приведённых затрат

Расчёт ущербов Суммарный среднегодовой недоотпуск электроэнергии в систему из-за отказов трансформаторов блока составит:

Выбор выключателей

Выбор выключателей в системе собственных нужд 6 кВ

Действие радиации на человека и окружающую среду

Среди вопросов, представляющих научный интерес, немногие приковывают к себе столь постоянное внимание общественности и вызывают так много споров, как вопрос о действии радиации на человека и окружающую среду. В промышленно развитых странах не проходит и недели без какой-нибудь демонстрации общественности по этому поводу. Такая же ситуация довольно скоро может возникнуть и в развивающихся странах, которые создают свою атомную энергетику; есть все основания утверждать, что дебаты по поводу радиации и ее воздействия вряд ли утихнут в ближайшем будущем.

Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Повреждений, вызванных в живом организме излучением, будет тем больше, чем больше энергии оно передаст тканям; количество такой переданной организму энергии называется дозой (термин не слишком удачный, поскольку первоначально он относился к дозе лекарственного препарата, т.е. дозе, идущей на пользу, а не во вред организму).

Естественные источники радиации Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами.

Земная радиация Основные радиоактивные изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232-долгоживущих изотопов, включившихся в состав Земли с самого ее рождения.

Радон Лишь недавно ученые поняли, что наиболее весомым из всех естественных источников радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) радон. Согласно текущей оценке НКДАР ООН, радон вместе со своими дочерними продуктами радиоактивного распада ответствен примерно за 3/4 годовой индивидуальной эффективной эквивалентной дозы облучения, получаемой населением от земных источников радиации, и примерно за половину этой дозы от всех естественных источников радиации. Большую часть этой дозы человек получает от радионуклидов, попадающих в его организм вместе с вдыхаемым воздухом, особенно в непроветриваемых помещениях.

Среди других промышленных отходов с высокой радиоактивностью, применявшихся в строительстве, следует назвать кирпич из красной глины-отхода производства алюминия, доменный шлак-отход черной металлургии и зольную пыль, образующуюся при сжигании угля.

Другие источники радиации Уголь, подобно большинству других природных материалов, содержит ничтожные количества первичных радионуклидов. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей.

Источники, созданные человеком За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом.

Ядерные взрывы За последние 40 лет каждый из нас подвергался облучению от радиоактивных осадков, которые образовались в результате ядерных взрывов. Речь идет не о тех радиоактивных осадках, которые выпали после бомбардировки Хиросимы и Нагасаки в 1945 году, а об осадках, связанных с испытанием ядерного оружия в атмосфере.

Атомная энергетика Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики.

Урановый концентрат, поступающий с обогатительной фабрики, подвергается дальнейшей переработке и очистке и на специальных заводах превращается в ядерное топливо. В результате такой переработки образуются газообразные и жидкие радиоактивные отходы, однако дозы облучения от них намного меньше, чем на других стадиях ядерного топливного цикла.

Профессиональное облучение Самые большие дозы облучения, источником которого являются объекты атомной промышленности, получают люди, которые на них работают. Профессиональные дозы почти повсеместно являются самыми большими из всех видов доз.

Внизу, под землей, повышенные дозы получают шахтеры, добывающие каменный уголь, железную руду и т. д. Индивидуальные дозы сильно различаются, а при некоторых видах подземных работ (исключая работы в каменноугольных шахтах) эти дозы могут быть даже выше, чем в урановых рудниках. Очень высокие дозы - более 300 мЗв в год, что в 6 раз выше международного стандарта, принятого для работников атомной промышленности, - получает персонал курортов, где применяются радоновые ванны и куда люди едут, чтобы поправить свое здоровье.

Действие радиации на человека Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям (рис. 5.1). При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

Репродуктивные органы и глаза также отличаются повышенной чувствительностью к облучению. Однократное облучение семенников при дозе всего лишь в 0,1 Гр приводит к временной стерильности мужчин, а дозы свыше двух грэев могут привести к постоянной стерильности: лишь через много лет семенники смогут вновь продуцировать полноценную сперму.

Генетические последствия облучения Изучение генетических последствий облучения связано с еще большими трудностями, чем в случае рака. Во-первых, очень мало известно о том, какие повреждения возникают в генетическом аппарате человека при облучении; во-вторых, полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений; и, в-третьих, как и в случае рака, эти дефекты невозможно отличить от тех, которые возникли совсем по другим причинам.

Облучение в результате радиоактивного загрязнения окружающей среды предприятиями атомной энергетики гораздо труднее оценить однозначно. Во-первых, все выгоды, которые может дать получение энергии таким способом, достаются всему обществу в целом, а люди, живущие рядом с такими предприятиями, на которых падает весь риск, получают лишь малую толику этих выгод.

Актуальность экодизайна на примере гнутой мебели